Building AI Agents for Blockchain Interaction with EVM MCP Protocol

April 1, 2025ai

Introduction to EVM MCP Protocol

The EVM MCP (Ethereum Virtual Machine Message Call Protocol) is a standardized protocol for establishing connections between AI agents and EVM-compatible blockchain networks. Built on the foundation of the open-source evm-mcp-server, this protocol creates a seamless interface for AI systems to interact with smart contracts, tokens, and decentralized applications (dApps).

MCP serves as an abstraction layer that shields AI developers from many of the complexities involved in blockchain interactions, offering a more accessible pathway for creating autonomous agents that can deploy, interact with, and manage blockchain-based systems.

Key Components of the MCP Protocol

1. The MCP Server Architecture

The core of the MCP implementation is the server that manages connections between AI agents and blockchain networks. The server:

  • Handles authentication and authorization
  • Processes and routes message calls
  • Manages transaction signing and submission
  • Provides standardized error handling and status reporting

2. Request Schema

The MCP protocol uses a structured JSON format for all requests:

{
  "chainId": 1,
  "to": "0x742d35Cc6634C0532925a3b844Bc454e4438f44e",
  "data": "0x...",
  "value": "0",
  "from": "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045"
}

Key fields include:

  • chainId: The target blockchain network ID
  • to: The recipient smart contract address
  • data: The calldata payload (encoded function calls)
  • value: The amount of native token to send
  • from: The sender address

3. The RPC Interface

The MCP server exposes a JSON-RPC interface that follows standard Ethereum patterns:

  • mcp_call: For read-only interactions with contracts
  • mcp_sendTransaction: For state-changing operations
  • mcp_getTransactionReceipt: For retrieving execution results
  • mcp_getTransactionByHash: For retrieving transaction details

Building an AI Agent for Blockchain Interaction

Prerequisites

Before building your blockchain-interacting AI agent, ensure you have:

  • Access to an MCP server instance (self-hosted or via a provider)
  • API credentials for the MCP server
  • Understanding of AI systems and natural language processing
  • Basic familiarity with blockchain concepts and Ethereum specifically
  • Python development environment with necessary libraries

Step 1: Setting Up the Environment

First, set up your development environment and connect to the MCP server:

import os
import json
import requests
from dotenv import load_dotenv
import openai  # or your preferred AI framework

# Load environment variables
load_dotenv()

# MCP server configuration
MCP_SERVER_URL = os.getenv('MCP_SERVER_URL')
MCP_API_KEY = os.getenv('MCP_API_KEY')

# Configure AI client
ai_client = openai.Client(api_key=os.getenv('OPENAI_API_KEY'))

# MCP server headers
headers = {
    'Content-Type': 'application/json',
    'Authorization': f'Bearer {MCP_API_KEY}'
}

Step 2: Creating the MCP Client Interface

Implement a client interface for the MCP server:

class MCPClient:
    def __init__(self, server_url, api_key):
        self.server_url = server_url
        self.headers = {
            'Content-Type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        }
        self.request_id = 1
        
    def _make_rpc_call(self, method, params):
        """Make a JSON-RPC call to the MCP server"""
        payload = {
            "jsonrpc": "2.0",
            "method": method,
            "params": params,
            "id": self.request_id
        }
        self.request_id += 1
        
        response = requests.post(
            self.server_url,
            headers=self.headers,
            json=payload
        )
        
        result = response.json()
        
        if "error" in result:
            raise Exception(f"MCP Error: {result['error']['message']}")
            
        return result["result"]
        
    def call(self, chain_id, to, data, from_address=None, value="0"):
        """Make a read-only call to a smart contract"""
        params = [{
            "chainId": chain_id,
            "to": to,
            "data": data,
            "value": value
        }]
        
        if from_address:
            params[0]["from"] = from_address
            
        return self._make_rpc_call("mcp_call", params)
        
    def send_transaction(self, chain_id, to, data, from_address, value="0"):
        """Send a transaction to the blockchain"""
        params = [{
            "chainId": chain_id,
            "to": to,
            "data": data,
            "value": value,
            "from": from_address
        }]
            
        return self._make_rpc_call("mcp_sendTransaction", params)
        
    def get_transaction_receipt(self, tx_hash):
        """Get the receipt for a transaction"""
        return self._make_rpc_call("mcp_getTransactionReceipt", [tx_hash])

Step 3: Implementing the Intent Recognition System

Create a system that translates natural language instructions into blockchain operations:

class IntentRecognizer:
    def __init__(self, ai_client, contract_abis=None):
        self.ai_client = ai_client
        self.contract_abis = contract_abis or {}
        
    async def recognize_intent(self, user_input):
        """Process natural language to determine blockchain intent"""
        response = await self.ai_client.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "Translate the following request into a structured blockchain operation."},
                {"role": "user", "content": user_input}
            ],
            response_format={"type": "json_object"}
        )
        
        structured_intent = json.loads(response.choices[0].message.content)
        return self._prepare_mcp_request(structured_intent)
        
    def _prepare_mcp_request(self, intent):
        """Convert structured intent into MCP request format"""
        operation_type = intent.get("operation_type")
        
        if operation_type == "token_transfer":
            return self._create_token_transfer_request(
                intent.get("chain_id", 1),
                intent.get("token_address"),
                intent.get("recipient"),
                intent.get("amount"),
                intent.get("from_address")
            )
        elif operation_type == "contract_call":
            return self._create_contract_call_request(
                intent.get("chain_id", 1),
                intent.get("contract_address"),
                intent.get("function_name"),
                intent.get("parameters", []),
                intent.get("from_address"),
                intent.get("value", "0")
            )
        else:
            raise ValueError(f"Unsupported operation type: {operation_type}")
        
    def _create_token_transfer_request(self, chain_id, token_address, recipient, amount, from_address):
        """Create ERC-20 token transfer request"""
        # Get ABI for ERC-20 tokens
        from web3 import Web3
        import json
        
        # Standard ERC-20 transfer function selector
        # This is the keccak256 hash of "transfer(address,uint256)" signature
        transfer_selector = "0xa9059cbb"
        
        # Encode the parameters (recipient address and amount)
        # First, pad the address to 32 bytes
        padded_address = recipient.replace("0x", "").rjust(64, "0")
        
        # Convert amount to wei and pad to 32 bytes
        amount_wei = Web3.to_wei(amount, "ether")
        padded_amount = hex(amount_wei)[2:].rjust(64, "0")
        
        # Combine the function selector and encoded parameters
        data = transfer_selector + padded_address + padded_amount
        
        return {
            "chainId": chain_id,
            "to": token_address,
            "data": "0x" + data,
            "value": "0",
            "from": from_address
        }
        
    def _create_contract_call_request(self, chain_id, contract_address, function_name, parameters, from_address, value):
        """Create contract call request with encoded data"""
        # Here we would need the ABI for the specific contract
        # For demonstration, we'll assume the ABI is available in self.contract_abis
        
        abi = self.contract_abis.get(contract_address)
        if not abi:
            raise ValueError(f"ABI not found for contract {contract_address}")
            
        from web3 import Web3
        
        # Create contract instance
        w3 = Web3()
        contract = w3.eth.contract(address=contract_address, abi=abi)
        
        # Get the function object
        contract_function = getattr(contract.functions, function_name)
        
        # Build the transaction data
        tx_data = contract_function(*parameters).build_transaction({
            "chainId": chain_id,
            "gas": 2000000,
            "maxFeePerGas": 2000000000,
            "maxPriorityFeePerGas": 1000000000,
            "nonce": 0  # This will be ignored in the request
        })
        
        return {
            "chainId": chain_id,
            "to": contract_address,
            "data": tx_data["data"],
            "value": value,
            "from": from_address
        }

Step 4: Building the Blockchain AI Agent

Now, integrate all components into a cohesive agent:

class BlockchainAIAgent:
    def __init__(self, mcp_server_url, mcp_api_key, ai_api_key, wallet_address):
        # Initialize MCP client
        self.mcp_client = MCPClient(mcp_server_url, mcp_api_key)
        
        # Initialize AI client
        self.ai_client = openai.Client(api_key=ai_api_key)
        
        # Initialize intent recognizer
        self.intent_recognizer = IntentRecognizer(self.ai_client)
        
        # Set wallet address
        self.wallet_address = wallet_address
        
        # Initialize memory for conversation context
        self.memory = []
        
    async def process_instruction(self, user_instruction):
        """Process a natural language instruction from the user"""
        # Add to agent memory
        self.memory.append({"role": "user", "content": user_instruction})
        
        # Recognize intent and convert to MCP request
        try:
            mcp_request = await self.intent_recognizer.recognize_intent(user_instruction)
            
            # Ensure from address is set
            if "from" not in mcp_request or not mcp_request["from"]:
                mcp_request["from"] = self.wallet_address
                
            # Determine if this is a read or write operation
            is_write_operation = self._is_state_changing(mcp_request)
            
            if is_write_operation:
                # Send transaction
                tx_hash = self.mcp_client.send_transaction(
                    mcp_request["chainId"],
                    mcp_request["to"],
                    mcp_request["data"],
                    mcp_request["from"],
                    mcp_request.get("value", "0")
                )
                
                # Wait for receipt
                receipt = self._wait_for_receipt(tx_hash)
                result = {"tx_hash": tx_hash, "receipt": receipt}
            else:
                # Make read-only call
                result = self.mcp_client.call(
                    mcp_request["chainId"],
                    mcp_request["to"],
                    mcp_request["data"],
                    mcp_request.get("from"),
                    mcp_request.get("value", "0")
                )
                
            # Generate response using AI
            response = await self._generate_response(user_instruction, mcp_request, result)
            
            # Add to agent memory
            self.memory.append({"role": "assistant", "content": response})
            
            return {
                "response": response,
                "operation_result": result
            }
            
        except Exception as e:
            error_response = f"I encountered an error processing your request: {str(e)}"
            self.memory.append({"role": "assistant", "content": error_response})
            return {"response": error_response, "error": str(e)}
            
    def _is_state_changing(self, request):
        """Determine if a request will change blockchain state"""
        # This is a simplified check
        # In practice, you would need to analyze the function signature
        
        # If there's value being transferred, it's a state change
        if request.get("value") and request["value"] != "0":
            return True
            
        # If there's no data, it's a simple ETH transfer (state changing)
        if not request.get("data") or request["data"] == "0x":
            return True
            
        # Otherwise, analyze the function selector (first 4 bytes of data)
        # This would require knowledge of the contract's ABI
        # For simplicity, we'll assume any data payload means a state change
        return True
        
    def _wait_for_receipt(self, tx_hash, max_attempts=30):
        """Wait for a transaction receipt with timeout"""
        for i in range(max_attempts):
            try:
                receipt = self.mcp_client.get_transaction_receipt(tx_hash)
                if receipt:
                    return receipt
            except Exception:
                pass
                
            # Wait before retrying
            import time
            time.sleep(2)
            
        raise TimeoutError(f"Transaction {tx_hash} was not mined within the timeout period")
        
    async def _generate_response(self, instruction, request, result):
        """Generate a human-friendly response about the operation"""
        context = json.dumps({
            "instruction": instruction,
            "request": request,
            "result": result
        })
        
        response = await self.ai_client.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": f"You are a blockchain AI assistant. Explain the results of the following blockchain operation in simple terms:\n{context}"},
                *self.memory[-5:] # Include recent conversation history
            ]
        )
        
        return response.choices[0].message.content

Practical Applications

1. Automated DeFi Portfolio Management

async def auto_rebalance_portfolio(self, target_allocations, chain_id=1):
    """
    Automatically rebalance a DeFi portfolio based on target allocations
    
    Args:
        target_allocations: Dict mapping token addresses to target percentages
        chain_id: The blockchain network to operate on
    """
    # Get current token balances
    current_balances = await self._get_token_balances(target_allocations.keys(), chain_id)
    
    # Calculate total portfolio value in a stable reference (e.g., USD)
    portfolio_value, token_values = await self._calculate_portfolio_value(current_balances, chain_id)
    
    # Determine required trades to achieve target allocation
    required_trades = []
    for token_address, target_pct in target_allocations.items():
        current_value = token_values.get(token_address, 0)
        target_value = portfolio_value * (target_pct / 100)
        
        # Calculate difference
        value_diff = target_value - current_value
        
        # If difference is significant (e.g., >1% of portfolio), add to trades
        if abs(value_diff) > (portfolio_value * 0.01):
            required_trades.append({
                "token": token_address,
                "direction": "buy" if value_diff > 0 else "sell",
                "value_diff": abs(value_diff)
            })
    
    # Execute trades via a DEX (e.g., Uniswap)
    for trade in required_trades:
        if trade["direction"] == "buy":
            await self._execute_token_swap(
                "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",  # USDC as example
                trade["token"],
                trade["value_diff"],
                chain_id
            )
        else:
            await self._execute_token_swap(
                trade["token"],
                "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",  # USDC as example
                trade["value_diff"],
                chain_id
            )
    
    return "Portfolio rebalanced successfully"

2. Autonomous DAO Governance Participation

async def analyze_and_vote_on_proposals(self, dao_address, chain_id=1):
    """
    Analyze open proposals for a DAO and vote according to predefined strategies
    
    Args:
        dao_address: The address of the DAO governance contract
        chain_id: The blockchain network to operate on
    """
    # Get active proposals
    active_proposals = await self._get_active_proposals(dao_address, chain_id)
    
    for proposal in active_proposals:
        # Check if already voted
        has_voted = await self._check_if_voted(dao_address, proposal["id"], chain_id)
        if has_voted:
            continue
            
        # Analyze proposal using AI
        proposal_details = await self._get_proposal_details(dao_address, proposal["id"], chain_id)
        
        analysis = await self.ai_client.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": 
                    "You are a DAO governance analyst. Evaluate the following proposal and recommend a vote based on the established strategy." +
                    "The strategy prioritizes: 1) Protocol security, 2) Long-term value accrual, 3) Decentralization"},
                {"role": "user", "content": json.dumps(proposal_details)}
            ],
            response_format={"type": "json_object"}
        )
        
        vote_decision = json.loads(analysis.choices[0].message.content)
        
        # Vote on the proposal
        await self._cast_vote(
            dao_address,
            proposal["id"],
            vote_decision["vote"],  # "for", "against", or "abstain"
            chain_id
        )
    
    return "Governance participation completed"

3. Automated NFT Trading

async def monitor_and_trade_nfts(self, collection_addresses, budget_eth, chain_id=1):
    """
    Monitor NFT collections and automatically purchase undervalued assets
    
    Args:
        collection_addresses: List of NFT collection addresses to monitor
        budget_eth: Maximum budget in ETH
        chain_id: The blockchain network to operate on
    """
    for collection in collection_addresses:
        # Get collection floor price
        floor_price = await self._get_collection_floor_price(collection, chain_id)
        
        # Get recent sales
        recent_sales = await self._get_recent_sales(collection, chain_id)
        
        # Get listed NFTs
        listed_nfts = await self._get_listed_nfts(collection, chain_id)
        
        # Analyze each listed NFT for potential value
        for nft in listed_nfts:
            if float(nft["price"]) > float(budget_eth):
                continue
                
            # Get NFT metadata and traits
            metadata = await self._get_nft_metadata(collection, nft["token_id"], chain_id)
            
            # Compare with collection trait floor prices
            trait_analysis = await self._analyze_nft_traits(collection, metadata["attributes"], chain_id)
            
            # Use AI to determine if this is a good purchase
            recommendation = await self.ai_client.chat.completions.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": "You are an NFT trading assistant. Evaluate this NFT for potential purchase."},
                    {"role": "user", "content": json.dumps({
                        "collection": collection,
                        "token_id": nft["token_id"],
                        "price": nft["price"],
                        "floor_price": floor_price,
                        "metadata": metadata,
                        "trait_analysis": trait_analysis,
                        "recent_sales": recent_sales
                    })}
                ],
                response_format={"type": "json_object"}
            )
            
            decision = json.loads(recommendation.choices[0].message.content)
            
            if decision["should_buy"]:
                # Execute purchase
                await self._purchase_nft(collection, nft["token_id"], nft["price"], chain_id)
                budget_eth = float(budget_eth) - float(nft["price"])
                
                if budget_eth <= 0:
                    break
    
    return "NFT trading session completed"

Advanced Integration Patterns

1. Multi-chain Operations

The MCP protocol supports operations across multiple EVM-compatible chains:

async def bridge_assets(self, source_chain_id, target_chain_id, token_address, amount):
    """
    Bridge assets from one chain to another
    
    Args:
        source_chain_id: Source chain ID
        target_chain_id: Target chain ID
        token_address: Token to bridge
        amount: Amount to bridge
    """
    # Step 1: Approve the bridge contract on source chain
    bridge_contract = self._get_bridge_address(source_chain_id, target_chain_id)
    
    approve_request = {
        "chainId": source_chain_id,
        "to": token_address,
        "data": self._encode_approve_call(bridge_contract, amount),
        "from": self.wallet_address
    }
    
    approve_tx = self.mcp_client.send_transaction(
        approve_request["chainId"],
        approve_request["to"],
        approve_request["data"],
        approve_request["from"]
    )
    
    self._wait_for_receipt(approve_tx)
    
    # Step 2: Execute bridge transaction
    bridge_request = {
        "chainId": source_chain_id,
        "to": bridge_contract,
        "data": self._encode_bridge_call(token_address, target_chain_id, amount),
        "from": self.wallet_address
    }
    
    bridge_tx = self.mcp_client.send_transaction(
        bridge_request["chainId"],
        bridge_request["to"],
        bridge_request["data"],
        bridge_request["from"]
    )
    
    receipt = self._wait_for_receipt(bridge_tx)
    
    # Step 3: Wait for confirmation on target chain
    status = await self._monitor_bridge_status(source_chain_id, target_chain_id, receipt["logs"])
    
    return status

2. Integration with AI-Powered Oracles

async def get_ai_oracle_prediction(self, query, oracle_address, chain_id=1):
    """
    Query an on-chain AI oracle for predictions
    
    Args:
        query: The query string to send to the oracle
        oracle_address: The oracle contract address
        chain_id: The blockchain network where the oracle is deployed
    """
    # Step 1: Generate a commitment hash for the query
    import hashlib
    query_hash = hashlib.sha256(query.encode()).hexdigest()
    
    # Step 2: Format oracle request
    oracle_request = {
        "chainId": chain_id,
        "to": oracle_address,
        "data": self._encode_oracle_request(query_hash),
        "value": "1000000000000000",  # 0.001 ETH as fee
        "from": self.wallet_address
    }
    
    # Step 3: Send request to oracle
    request_tx = self.mcp_client.send_transaction(
        oracle_request["chainId"],
        oracle_request["to"],
        oracle_request["data"],
        oracle_request["from"],
        oracle_request["value"]
    )
    
    receipt = self._wait_for_receipt(request_tx)
    
    # Step 4: Extract request ID from logs
    request_id = self._extract_request_id_from_logs(receipt["logs"])
    
    # Step 5: Wait for oracle to respond
    for i in range(30):
        # Check if prediction is ready
        check_request = {
            "chainId": chain_id,
            "to": oracle_address,
            "data": self._encode_check_prediction(request_id),
            "from": self.wallet_address
        }
        
        result = self.mcp_client.call(
            check_request["chainId"],
            check_request["to"],
            check_request["data"],
            check_request["from"]
        )
        
        if result != "0x":
            # Decode the prediction result
            prediction = self._decode_prediction_result(result)
            return prediction
            
        # Wait before checking again
        import time
        time.sleep(10)
    
    raise TimeoutError("Oracle did not respond within the timeout period")

Best Practices and Security Considerations

1. Implementing Security Safeguards

class SecurityManager:
    def __init__(self, wallet_address):
        self.wallet_address = wallet_address
        self.transaction_limits = {
            "default": {
                "daily": "1000000000000000000",  # 1 ETH
                "per_tx": "500000000000000000"   # 0.5 ETH
            },
            "contracts": {}  # Whitelist specific contracts
        }
        self.whitelist = {}  # Approved addresses by function
        self.blacklist = []  # Blocked addresses
        
    def validate_transaction(self, tx_request):
        """Validate a transaction against security policies"""
        # Check for blacklisted addresses
        if tx_request["to"].lower() in [addr.lower() for addr in self.blacklist]:
            raise SecurityException("Recipient address is blacklisted")
            
        # Check transaction value limits
        if "value" in tx_request and tx_request["value"] != "0":
            value = int(tx_request["value"])
            per_tx_limit = self.transaction_limits["default"]["per_tx"]
            
            # Check for contract-specific limits
            if tx_request["to"].lower() in self.transaction_limits["contracts"]:
                per_tx_limit = self.transaction_limits["contracts"][tx_request["to"].lower()]["per_tx"]
                
            if value > int(per_tx_limit):
                raise SecurityException(f"Transaction value exceeds per-transaction limit of {per_tx_limit}")
                
        # For contract interactions, validate function signature and parameters
        if "data" in tx_request and tx_request["data"] != "0x":
            function_sig = tx_request["data"][:10]  # First 4 bytes + 0x prefix
            
            # If we have a whitelist for this contract and function
            if tx_request["to"].lower() in self.whitelist and function_sig in self.whitelist[tx_request["to"].lower()]:
                # Validate parameters if needed
                pass
                
        return True

2. Implementing Rate Limiting and Transaction Monitoring

class TransactionMonitor:
    def __init__(self):
        self.tx_history = []
        self.daily_totals = {}
        
    def record_transaction(self, tx_request, tx_hash, receipt=None):
        """Record a transaction in the monitoring system"""
        import time
        
        # Create transaction record
        tx_record = {
            "timestamp": int(time.time()),
            "request": tx_request,
            "tx_hash": tx_hash,
            "receipt": receipt,
            "date": time.strftime("%Y-%m-%d")
        }
        
        # Add to history
        self.tx_history.append(tx_record)
        
        # Update daily totals
        date = tx_record["date"]
        if date not in self.daily_totals:
            self.daily_totals[date] = 0
            
        if "value" in tx_request and tx_request["value"] != "0":
            self.daily_totals[date] += int(tx_request["value"])
            
        return tx_record
        
    def check_daily_limit(self, tx_request, daily_limit):
        """Check if a transaction would exceed the daily limit"""
        import time
        
        date = time.strftime("%Y-%m-%d")
        current_total = self.daily_totals.get(date, 0)
        
        if "value" in tx_request and tx_request["value"] != "0":
            new_total = current_total + int(tx_request["value"])
            if new_total > int(daily_limit):
                return False
                
        return True

Conclusion

The EVM MCP protocol provides a standardized interface for AI agents to interact with blockchain networks, abstracting away many of the complexities involved in direct blockchain interaction. By leveraging the open-source evm-mcp-server, developers can build sophisticated AI agents that can autonomously interact with smart contracts, manage assets, and participate in decentralized systems.

As blockchain technology and AI continue to evolve, the intersection of these fields offers exciting possibilities for autonomous financial systems, decentralized governance, and intelligent digital asset management. The MCP protocol represents an important step toward making these possibilities more accessible to developers and users alike.

Resources